Martin Luther King Jr. Day
Our office will be closed Monday, Jan 18th in observance of Martin Luther King Jr. Day. We will reopen at regular business hours on Tuesday, Jan 19th.
Research Study Abstract
- Home /
- Research Database /
- Research Study Abstract
Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study
- Published on Nov. 24, 2014
Background: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output.
Methods: Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points.
Results: Using algorithms alone resulted in “mail-days” incorrectly identified as “wear-days” (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points.
Conclusions: Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies.